Sunday, 15 June 2014

PRACTICAL 4

Practical 4: Determination of diffusion coefficient

Theory

Diffusion, which is the spontaneous movement of solutes from an area of high concentration to an area of low concentration can be explained by Fick's law which states that the flux of material (amount dm in time dt) across a given plane (area A) is proportional to the concentration gradient dc/dx
                                    dc          
                  dm = -DA ---- dt ----------------------     (i)
                                                         dx
D is the diffusion coefficient or diffusivity for the solute, in unit m2s-1
.

If a solution containing neutral particles with the concentration M0is placed within a cylindrical tube next to a water column, diffusion can be stated as
M = M0 exp (-x2/4Dt) --------------------------- (ii)
where M is the concentration at distance x from the intersection between water and solution that is measured at time t.

By changing equation (ii) to its logarithmic form, we get

ln M =1n M0 - x/4Dt     or
 2.303 x 4D (log10 M0 – log10 M) t= x2 ----------------- (iii)

Thus a plot of xagainst t can produce a straight line that passes through the origin with the slope 2.303 x 4D (log10 M0 – log10 M). From here D can be calculated.

If the particles in the solution are assumed to be spherical, their size and molecular weight can be calculated by the Stokes-Einstein equation.

D = kT/6πηa

where k is the Boltzmann constant 1.38 x 1023 Jk-1T temperature in Kelvin, π the viscosity of the solvent in Nm-2s and a the radius of particle in M. The volume of a spherical particle is 4/3 πa3, thus its weight M is equivalent to 4/3 πa3 (ρ = density).
It is known that molecular weight M=mN (N is Avogadro’s number 6.023 x 1023 mol-1).
 M = 4/3 πa3Nρ ------------------- (v)

Diffusion for charged particles, equation (iii) needs to be modified to include potential gradient effect that exists between the solution and solvent. However, this can be overcome by adding a little sodium chloride into the solvent to prevent the formation of this potential gradient.

Agar gels contain a partially strong network of molecules that is penetrated by water. The water molecules form a continuous phase around the gel. Thus, the molecules of solutes can diffuse freely in the water if chemical interactions and adsorption effects do not exist entirely. Therefore, the gel forms an appropriate support system to be used in diffusion studies for molecules in a medium of water.

Experiment

Prepare 250m1 agar in Ringer's solution. Divide the agar into six test tubes; allow to cool at room temperature. Prepare agar in another test tube that has already been added with 1:500,000 crystal violet, this will be used as the standard to measure the color distance resulting from the crystal violet diffusion. Prepare solutions of crystal violet in distilled water in the concentrations 1:200, 1:400 and 1:600. Place 5ml of each crystal violet solution on the gels that was prepared; close to prevent evaporation and store at temperature 28°C and 37°C. Measure accurately the distance between the interface of this gel solution with the end of the crystal violet area that has color equivalent to the standard. Obtain the average of several measurements, this value is x in meter. Record values of x after 2 hours and at suitable time distances up till 2 weeks (Table 1).

Plot the graph for values of x2 (in M2against time (in seconds) for each of the concentration used. Calculate the diffusion coefficient D from the slope of the graph at temperature 28°C and 37°C and calculate also the molecular weight of the crystal violet using the equation N and V.





Results:
System
Time (s)
X
(x10-2m)
     X²
(x10-4m²)
Gradient of graph (m²sˉ¹)
D (m²hrˉ¹)
Temperature
(ºc)
Average
of Diffusion Coefficient (m²hrˉ¹)


Crystal Violet with dilution 1:200

86400
172800
345600
518400
604800
691200
777600
1.3
2.0
2.5
3.1
4.0
4.2
4.5
      1.69
4.00
6.25
9.61
16.00
17.64
20.25


(17.64-4.00)x10-4
691200-172800

 = 3.055X10-9



9.760X10-11




28ºc












5.76X10-11


Crystal Violet with dilution 1:400

86400
172800
345600
518400
604800
691200
777600
1.3
1.5
2.3
3.0
3.3
3.5
3.7
1.69
2.25
5.29
9.00
10.89
12.25
13.69


(12.25-2.25) x10-4
691200-172800
= 1.929X10-9



6.762X10-11




28ºc




Crystal Violet with dilution 1:600
86400
172800
345600
518400
604800
691200
777600
0.3
0.4
0.7
0.9
1.1
1.1
1.2
0.09
0.16
0.49
0.81
1.21
1.21
1.44


(1.21-0.16)x10-4
691200-172800

= 2.025x10-10



7.524X10-12



28ºc



Graph ( m²) in  the function of time (s) of different Crystal Violet system  at 27˚C






System
Time (s)
X
(x10-2m)
(x10-4m²)
Gradient of graph (m²sˉ¹)
D (m²sˉ¹)
Temperature
(ºc)
Average
of Diffusion Coefficient (m²hrˉ¹)


Crystal Violet with dilution 1:200

86400
172800
345600
518400
604800
691200
777600
1.7
2.8
3.0
3.3
3.5
4.1
4.5
2.89
7.84
9.00
10.89
12.25
16.81
20.25


(16.81-7.84) x10-4
691200-172800
= 1.730x10-9



5.528X10-11





37ºc












4.030X10-11


Crystal Violet with dilution 1:400

86400
172800
345600
518400
604800
691200
777600
1.0
1.3
1.8
2.3
2.8
3.3
3.5
1.00
1.69
3.24
5.29
7.84
10.89
12.25


(10.89-1.69) x10-4
691200-172800

= 1.775X10-9



6.204X10-11




37ºc




Crystal Violet with dilution 1:600
86400
172800
345600
518400
604800
691200
777600
0.1
0.5
0.6
0.7
0.9
1.0
1.1
0.01
0.25
0.39
0.49
0.81
1.00
1.21

(1.00-0.25) x10-4
691200-172800

= 1.447X10-10



5.376X10-12



37ºc


 Graph (m²) in  the function of time (hour) of different Crystal Violet system at 37˚C 





System
Time (s)
(x10-2m)
 (x10-4m²)
Gradient of graph (m²sˉ¹)
D (m²sˉ¹)
Temperature
(ºc)
Average
of Diffusion Coefficient (m²sˉ¹)



Bromothymol blue with
dilution
1:200
86400
172800
345600
518400
604800
691200
777600
1.3
1.6
2.1
2.7
3.0
3.3
3.5
1.69
2.56
4.41
7.29
9.0
10.89
12.25


(10.89-2.56) x10-4
691200-172800

= 1.607X10-9



5.134X10-11





27ºc












4.845X10-11 
Bromothymol blue with
dilution
1:400

86400
172800
345600
518400
604800
691200
777600
1.1
1.5
2.1
2.7
2.9
3.0
3.1
1.21
2.25
4.41
7.29
8.41
9.00
9.61


(9.00-2.25) x10-4
691200-172800

= 1.302X10-9



4.564X10-11 




27ºc


Bromothymol blue with
dilution
1:600
86400
172800
345600
518400
604800
691200
777600
0.5
0.7
1.1
1.4
1.6
1.7
1.8
0.25
0.49
1.21
1.96
2.56
2.89
3.24


(2.89-0.49) x10-4
691200-172800

= 4.630X10-10



4.838X10-11



27ºc


 Graph ( m²) in  the function of time (hour) of different Bromothymol Blue system at 27˚C








System
Time (hr)
X
 (x10-2m)
 (x10-4m²)
Gradient of graph (m²sˉ¹)
D (m²sˉ¹)
Temperature
(ºc)
Average
of Diffusion Coefficient (m²sˉ¹)


Bromothymol blue with
dilution
1:200
86400
172800
345600
518400
604800
691200
777600
1.4
1.7
2.3
2.7
3.1
3.2
3.3
1.96
2.89
5.29
7.29
9.61
10.24
10.89


(10.24-2.89) x10-4
691200-172800

= 1.418X10-9



4.530X10-11




37ºc












2.409X10-11

Bromothymol blue with
dilution
1:400

86400
172800
345600
518400
604800
691200
777600
0.9
1.4
1.7
2.0
2.1
2.2
2.4
0.81
1.96
2.89
4.0
4.41
4.84
5.76


(4.84-1.96) x10-4
691200-172800

= 5.550X10-10



1.945X10-11





37ºc



Bromothymol blue with
dilution
1:600
86400
172800
345600
518400
604800
691200
777600
0.3
0.4
0.7
1.0
1.1
1.1
1.2
0.09
0.16
0.49
1.0
1.21
1.21
1.44


(1.21-0.25) x10-4
691200-172800

= 2.020X10-10



2.409X10-11



37ºc


Graph ( m²) in  the function of time (hour) of different Bromothymol        Blue system at 37˚C






 Calculations :
1(1)      Crystal Violet system with dilution 1:200 (28ºC)
From equation: 2.303 x 4D (log 10 Mo – log 10 M) t = X²
      Gradient of the graph = 2.303 x 4D (log 10 Mo - log 10 M)
Gradient of the graph = 3.055X10-9 m²/s
                          M=1:500,000 (standard)        Mo=1:200
                             =2x10-6                                   =5x10-3

2.303 x 4D [log 10 (5x10-3  ) - log  (2x10-6 )] = 3.055X10-9 m²/hour

D = 9.760X10-11 m²/s

2 (2) Crystal Violet system with dilution 1:400 (27ºC)
Gradient of the graph = 1.929X10-9 m²/hour
                                      M=1:500,000 (standard)           Mo=1:400
                                         =2x10-6                                     =2.5x10-3
2.303 x 4D [log 10 (2.5x10-3 ) - log 10 (2x10-6 )] = 1.929X10-9 m²/hour
D = 6.762X10-11 m²/hour

3(3)      Crystal Violet system with dilution 1:600 (27ºC)
Gradient of the graph = 2.424X10-6 m²/hour
                             M=1:500,000 (standard)           Mo=1:600
                                          =2x10-6                                    =1.67x10-3
2.303 x 4D [log 10 (1.67x10-3 )- log 10  (2x10-6 )] = 2.025X10-10 m²/hour

D =7.524X10-12 m²/hour

4(4)      Average of Diffusion Coefficient, m²/hour for Crystal Violet system at 27ºC

= [(9.760X10-11 m²/s) + (6.762X10-11 m²/s) + (7.524X10-12 m²/s]/3

=5.76X10-11 m²/s

5(5)      Crystal Violet system with dilution 1:200 (37ºC)
        Gradient of the graph = 1.730X10-9 m²/hour
                                     M=1:500,000 (standard)                Mo=1:200
                                        =2x10-6                                          =5x10-3
            2.303 x 4D [log 10 (5x10-3)- log 10  (2x10-6 )] = 1.730X10-9m²/s

D = 5.528X10-11 m²/s

6(6)      Crystal Violet system with dilution 1:400 (37ºC)
Gradient of the graph = 1.775X10-9 m²/s
                             M=1:500,000 (standard)            Mo=1:400
                                =2x10-6                                      =2.5x10-3
2.303 x 4D [log 10 (2.5x10-3  )-log 10  (2x10-6  )] = 1.775X10-9 m²/s
D = 6.204X10-11 m²/s
7(7)      Crystal Violet system with dilution 1:600 (37ºC)
Gradient of the graph = 1.447X10-10 m²/s
                        M=1:500,000 (standard)        Mo=1:600
                                     =2x10-6                                =1.67x10-3
2.303 x 4D [log 10 (1.67x10-3)- log 10  (2x10-6 )] = 1.447X10-10 m²/s
            D = 5.376X10-12 m²/s




8(8)      Average of Diffusion Coefficient, m²/hour for Crystal Violet system at 37ºC

= [(3.195X10-7 m²/hour)+( 1.753X10-7m²/hour)+( 1.237X10-7 m²/hour)]/3

= 4.030X10-11 m²/s

9(9)      Bromothymol Blue system with dilution 1:200 (27ºC)
From equation: 2.303 x 4D (log 10 Mo – log 10 M) t = X²
Gradient of the graph = 2.303 x 4D (log 10 Mo - log 10 M)
   1.90X10-5 m²/hour = 2.303 x 4D (log 10 Mo - log 10 M)
M=1:500,000 (standard)                                 Mo=1:200
   =1/500,000                                                        =1/200
   =2x10-6                                                              =5x10-3
2.303 x 4D (log 10 Mo – log 10 M) = 1.607X10-9 m²/s
2.303x4D [log 10 (5x10-3 )-log 10 (2x10-6 )] = 1.607X10-9 m²/s
D = 5.134X10-11 m²/s
1(10)  Bromothymol Blue system with dilution 1:400 (27ºC)
Gradient of the graph = 8.46X10-6 m²/hour
                             M=1:500,000 (standard)                      Mo=1:400
                                =2x10-6                                                =2.5x10-3
2.303 x 4D (log 10 Mo – log 10 M) = 8.46X10-6 m²/hour
2.303 x 4D [log 10 (2.5x10-3 ) - log 10  (2x10-6 )] = 1.302X10-9m²/s
D = 4.564X10-11 m²/s
1(11)  Bromothymol Blue system with dilution 1:600 (27ºC)
Gradient of the graph = 2.143X10-6 m²/hour
                                      M=1:500,000 (standard)       Mo=1:600
                                         =2x10-6                                 =1.67x10-3
2.303 x 4D [log 10 (1.67x10-3 ) -log 10 (2x10-6 )] = 1.302X10-9 m²/s

D = 4.838X10-11 m²/s

1(12)  Average of Diffusion Coefficient, m²/hour for Bromothymol Blue system at 27ºC
            = [(4.838X10-11 m²/s) + (4.564X10-11 m²/s) + (5.134X10-11 m²/s)]/3
            = 4.845X10-11 m²/s
1(13)  Bromothymol Blue system with dilution 1:200 (37ºC)
Gradient of the graph = 1.418X10-9 m²/s
                                     M=1:500,000 (standard)               Mo=1:200
                                      =2x10-6                                               =5x10-3
     2.303 x 4D [log 10 (5x10-3) - log 10 (2x10-6  )] = 1.418X10-9 m²/s
D= 4.530X10-11 m²/s
1(14)  Bromothymol Blue system with dilution 1:400 (37ºC)
Gradient of the graph = 5.550X10-10m²/s
                                      M=1:500,000 (standard)         Mo=1:400
                                         =2x10-6                                   =2.5x10-3
2.303 x 4D [log 10 (2.5x10-3 )-log 10  (2x10-6 )] = 5.550X10-10 m²/s

D = 1.945X10-11 m²/s

1(15)  Bromothymol Blue system with dilution 1:600 (37ºC)
Gradient of the graph =2.02X10-10 m²/s
                             M=1:500,000 (standard)        Mo=1:600
                                =2x10-6                                  =1.67x10-3
2.303 x 4D [log 10 (1.67x10-3 )- log 10  (2x10-6 )] = 2.02X10-10m²/s
D = 7.505X10-12 m²/s

1(16)   Average of Diffusion Coefficient, m²/hour for Bromothymol Blue system at 37ºC
= [(7.505X10-12 m²/s) + (1.945X10-11 m²/s) + (4.530X10-11 m²/s)]/3

= 2.409X10-11 m²/s

Questions :
1.     From the final value for D28ºc , estimate the value of D38ºc by using following equation .
D28ºC     =   T28ºC
                                    D37ºC           T37ºC
            Where ŋ1 and ŋ2 are viscosity of water at 27ºC and 37ºC .
Will the value of D37ºc is the same as final value? Give some explanation if they are different.

For Crystal Violet:

                        D28ºC = 5.760X10-11 m²/s                 

       D28ºC        =   T27ºC
                                    D37ºC             T37ºC
                                   
                                    5.76X10-11 28+273.15
                                         D37ºc         37+273.15
                       
                                    D37ºc = 5.93X10-11 m²/s  

For Bromothymol Blue;

                      D28ºC = 4.845X10-11 m²/s                   

       D28ºC =   T28ºC
                                 D37ºC             T37ºC
                                   
                                4.845X10-11 =  28+273.15
                                   D37ºc         37+273.15
                       
                                 D37ºc  = 4.99X10-11 m²/s  



There is slightly differences between these two values . This is because there is error occurred during the trial . For example parallax error when reading the measure , temperature at the room are not constant at 27ºC , the viscosity of agar in the test tube are not uniform , the “broken“ agar medium formed and others .

2.     Between Crystal Violet and Bromothymol Blue , which will diffuse much faster . Explain it .
Crystal Violet will diffuse much faster than Bromothymol Blue because the diffusion coefficient of Crystal Violet is larger than diffusion coefficient of Bromothymol Blue.
           
            From the formula , M = 4/3Πa³NP
                                            a³ = 3M / 4ΠNP
                                            a  =  ³√ 3M / 4ΠNP ---------------- equation (1)
            where M = molecular weight
                       N = Avogadro’s number (6.02X10²³molˉ¹)
                       P  = density
                       a  =  ratio of particles
The size of particles , a is proportional to the molecular weight ( M ) . The smaller of size of the particle , the easier for the particle to diffuse through the agar medium . It is proved through the following equation :
                       
            D =  KT    
                   6Πŋa   ------------------------- equation (2)
           
                =               KT_________  
      6Πŋ³√ 3M / 4ΠNP

      =         KT³√4 ΠNP ___
                6Πŋ³√ 3M


where K = Boltzmamn constant ( 1.38X10²³JKˉ¹ )
           T = Temperature in Kelvin
           Ŋ = viscosity of solvent ( Nmˉ²s )
           a  = radius of a particle
           D = diffusion coefficient
Through equation shown above , it shows that D increases when M decreases . This means that D is inversely proportional to M . Therefore , a smaller molecular weight of Crystal Violet diffuse faster than Bromothymol Blue .



 Discussion :

            Diffusion is a passive process which is driven by the difference of the gradient of the chemical potential, where the solute will spontaneously diffuse from a region of higher chemical potential (concentration gradient) to a region of lower chemical potential concentration gradient whilst the solvent molecules will move in reverse direction. If we assume the solute is moving in x direction, then the solvent molecules will moving in opposite direction, which is –x direction. Hence, this creates a net flow of solute in the x direction, if concentration of solute is high.
           
In this practical, the equation given is:

ln M = ln M–x2/4Dt
or         2.303 x 4D (log10 M– log10 M) t = x2
           
            The graph of x2 versus t is plotting and a straight line should be obtained which is the gradient of the graph, showing 2.303 x 4D (log10 M– log10 M). Hence, we can know that in both system of 28oC and 37oC, diffusion is faster in 1: 200 than 1: 400, followed by 1:600 through the decreasing value of D in this sequence. M is the system with dilution 1: 500,000 which acts as standard during the experiment. When Mo increases, (log10 M– log10 M) also increase, causing the concentration gradient to be bigger, then the driving force for the occurrence of diffusion would be bigger, and diffusion becomes faster and favorable.

Temperature is an important factor influencing the diffusion rate. The diffusion rate at 37oC is faster than 28oC. We can use Strokes-Enstein Law to explain this, that is

D = kT/6  a    
since the D is directly proportional to T, temperature, this leads to higher diffusion coefficient by increasing temperature. It is due to the energy provided from temperature causing the molecules vibrate vigorously and diffuse faster relatively through the agar medium.
           
From the equation, the diffusion coefficient, D is also influenced by particle size, a(inversely proportional), and viscosity, (inversely proportional – less space can pass through by increasing viscosity of medium).
           
However, to get all these theories right, some conditions are considered. For example, the solutes should have low molecular weight, its diffusion rate through the agar medium is almost equivalent to its diffusion rate in its own solution, and there is no chemical reaction or adsorption to occur. Besides, to reduce ionization of charged ionic groups of solute(not in this case of agar), suitable electrolyte like NaCl is added into the gel medium to avoid adsorption and exchange of ions, which will slow down the diffusion.

In conclusion, if we want to increase the diffusion rate, we need to increase the diffusion coefficient, D that is lowering the viscosity of agar medium, decreasing the size of particle that need to pass through the agar and increasing the temperature surrounding the test tube.
           
In this experiment, some errors may arise and causing inaccuracy to the final result. During the process of making agar, the agar powder is not completely dissolved in the Ringer solution. This lead to the agar cannot completely crystallize and some suspension of agar powder will occur leads to the concentration of agar solid is not equal. If the agar not complete solidify, this indicators will diffuse faster and the real diffusion coefficient of each indicators is not accurate anymore. As refer to the graph we plotted, there are many points that the straight line does not pass through. This can be explained by parallax errors when taking the x, diffusion distance. Since the Crystal Violet particles diffuse spontaneously, so the x value taken is from personal judgement and estimation. Besides, the temperature, T around the test tube is always not constant, such as the temperature 280C, room temperate is not kept constant for the day and night. Indirectly this will influent the diffusion coefficient and so diffusion rate.

                                                     put the agar into the fridge

                                        the condition of agar before become liquid form


Conclusion 
The value of D for Crystal Violet at 27ºc is 5.76X10-11 m²/s
The value of D for Crystal Violet 37ºc is 4.03X10-11 m²/s.
The value of D for Bromothymol Blue at 27ºc is 4.845X10-11 m²/s
The value of D for Bromothymol Blue at 37ºc is 2.409X10-11 m²/s
The temperature and concentration of diffusing molecules will affect the value of D ( diffusion coefficient ) .


References :

1.     Physicochemical Principles of Pharmacy , 2nd Edition ( 1988 ) A.T Florence and D.ettwood
2.      Connors, Kenneth Antonio. 1932. A Textbook of Pharmaceutical Analysis. Canada: John Wiley & Sons, Inc.